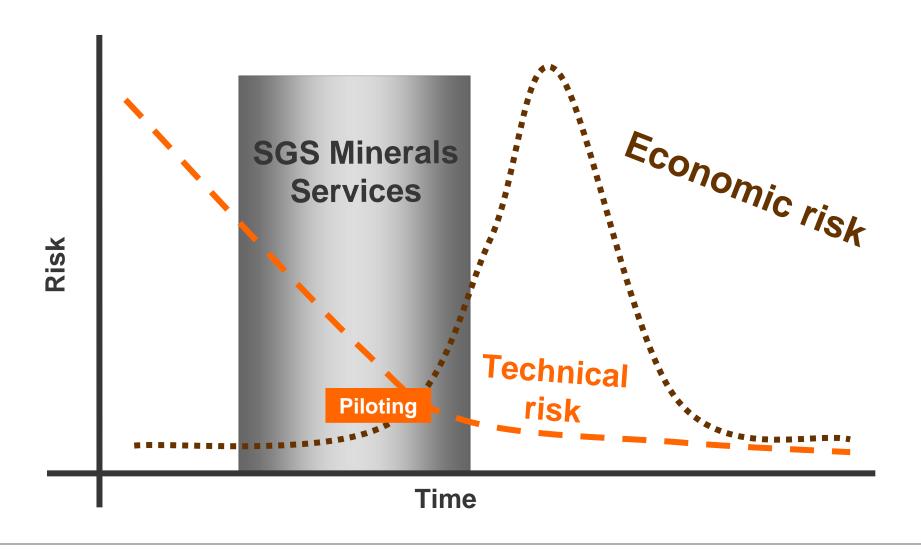
BANKABLE PILOT PLANTS

Fully Integrated Simulations of Continuous Operating Conditions

SGS ADVANCED MINERALOGY LABS

Global leader

- Certification & Verification
- Inspection & Monitoring
- Sampling & Testing
- Risk management
- Public company
- Market cap \$11.85B, no debt
- 65,000 people
- 650 labs in 7 industrial segments
- 2000 offices



- Laboratory analysis
- On-site services
- Metallurgical testing
- Mechanical sampling systems
- Inspection
- Sampling

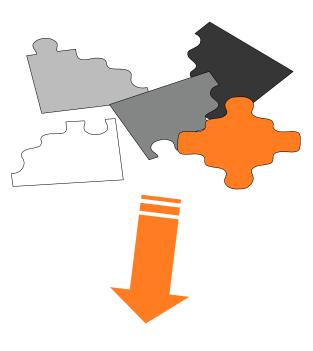
SGS PILOT PLANTS

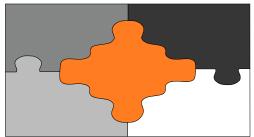
- Real-time integrated demonstration of processing circuit using expected feed, reagents and equipment.
- Pertinent for mining projects & industrial process design
- Pilot plants prove critical attributes of a commercial plant thus allow evaluation and troubleshooting
- Industry standard due diligence and risk reduction

Beneficiation

PAL Circuit

Neutralization, CCD


Precipitation, SX-EW


- 24/7 operation possible
- 150 dedicated staff, 70-80 hr weeks
- Metallurgy, mineralogy, analytical, process control, environmental
- On-site maintenance (electrical, mechanical, instrumentation)

SGS VALUE OF INTEGRATED PILOT PLANTS

- Demonstrate anticipated operations
- Integrate unit processes in real time
- Review impact of feed variability
- Assess recycle streams
- Identify potential problems (operating, automation, corrosion, maintenance)
- Confirm energy needs, water balance and treatment, reagent consumption & equipment sizing
- Prove product quality and generate market samples
- Mitigate environmental concerns

- 3-6 integrated pilot plants/year for 30 years
- 10 off-site, in-plant pilot plants
- 15 broad scope, in-plant services contracts
- 8 on-site start-ups

INTEGRATED PILOT PLANTS (SELECTED FROM 1998-2009)

- Boleo Cu, Au
- Skye Resources Ni
- MacKenzie Bay V
- Antamina Cu, Zn
- PolyMet/NorthMet many
- Key Lake (on-site) NiCo As
- Voiseys Bay Ni Cu
- Sepon, Oxiana Cu, Au, Ag
- Avalon Ventures REE
- North American Palladium PGE

- Farrallon Zn, Cu
- Nui Phao, Tiberon W, F, Bi
- Montcalm Ni, Cu
- Winnaarshoek, Impala PGE
- Pebble Au
- Oyu Tolgoi Au, Cu
- Pascua-Lama Au
- Pueblo Viejo Au
- Pogo Au

SGS TYPICAL TIMELINE OF PROJECT DEVELOPMENT

- Characterize ore
 - Grade, mineralogy, beneficiation, settling, viscosity, geometallurgy
- Bench-scale testwork
 - Linked to process design criteria, variability testing, geometallurgy
- Process selection
 - Flowsheet development and optimization
- Pilot-scale testwork
 - Confirm design criteria on composites of various ore types
 - Create samples of final products for market evaluation.
 - Provide bankable assessment of operational viability

PILOT PLANT PREPARATION AND MANAGEMENT

Expertise

Mineral Processing
Hydrometallurgy
Geometallurgy
Environment
Analytical
Mineralogy
Interdisciplinary

Facilities

Laboratories
Pilot Plant
Analytical Laboratory
Advanced Mineralogy
Laboratory

Pilot plant management

Project budgeting
Pre-pilot testwork
Flowsheet development
Planning
Design
Construction
Operation
Data Collection
Reporting
Client relations

Services

Maintenance
Purchasing
IT support
Health, Safety and
Environment
Administrative support

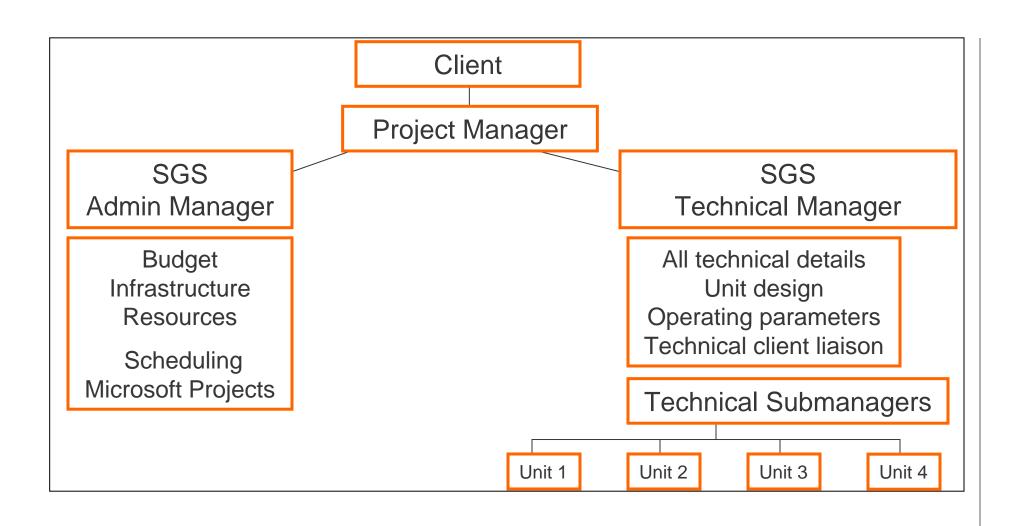
Critical mass

Qualified workspace ~ 80+
staff
24/7 analytical coverage
Dedicated trades

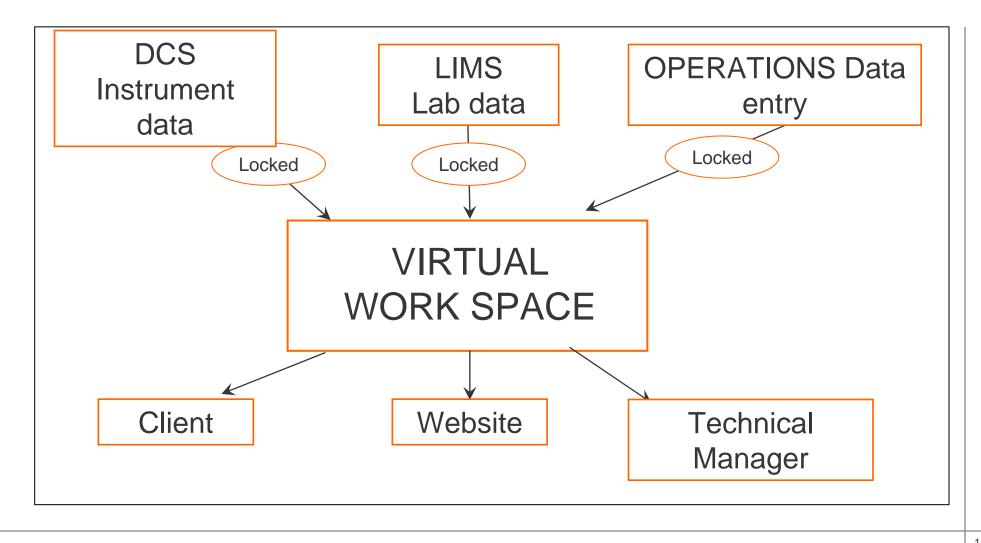
Technical areas of expertise- Senior Metallurgists/ Project Managers/ Consultants

Administration Budgeting Resources Schedule

Leaching- POX autoclave Separations/ CCD/ Rheology SX-EW, Purification Overall technical and data management

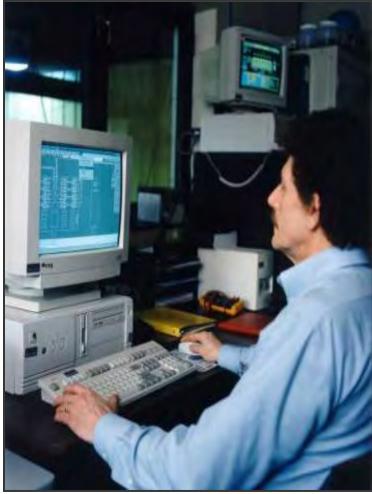

Shift coverage 24/7 - circuits - Shift leaders/ technologists

Front end – feed preparation and leaching Neutralization - CCD SX-EW Iron removal Precipitation circuits Final treatment – process water make- up


Data acquisition 24/7 - Reporting – daily Client feed back

SGS PROJECT MANAGEMENT OVERVIEW

SGS DATA MANAGEMENT



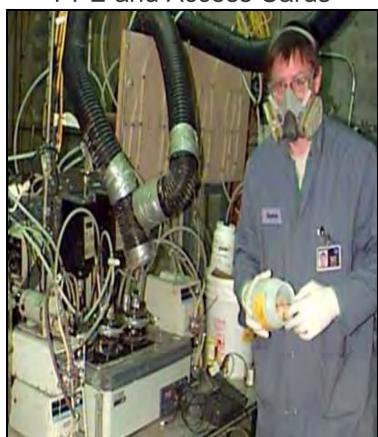
SGS LOGISTICS

- Typical sample size: 200 kg 2 tonnes
- Minimum project time: 3 months
 - Planning: 2 weeks
 - Set-up: 1-2 weeks
 - Piloting: 3-5 weeks
 - Reporting 4-8 weeks
- Health and safety key considerations
- Ambient, heated, frozen sample storage options
- Sample ownership remains with you

- XRF
- Particle Size Analysis

SGS LOGISTICS


- Quick connects
- Data entry
- Barcoded samples



PPE and Access Cards

SGS ACCREDITED ANALYTICAL SERVICES

- Analytical
- Environmental
- Mineralogy

- Respected Quality ISO 17025
- Numerous accredited labs in Canada, South Africa, South America, Australia, Russia, China

SGS ADV. MINERALOGY SERVICE CENTRE

- Lab network providing automated process mineralogy services to high volume users.
 - QEM Scan (6 ys experience, 30+ projects)
 - XRD, SEM, electron microprobe
 - Image analysis
 - Petrography (PTS, PS), photography

Applications

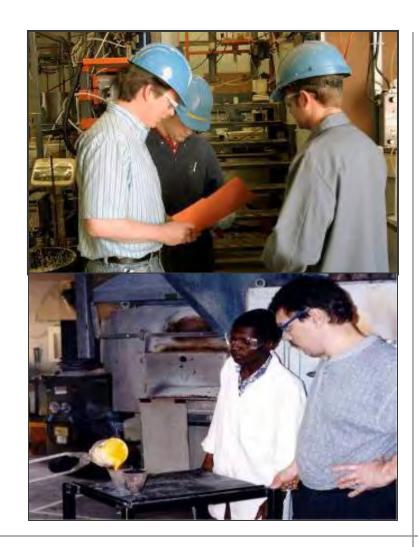
- Ore-type definition
- Plant control and optimization
- Environmental and mine planning
- Economic analysis

- Expert system = knowledge base + reasoning engine Mimics human thought process
- **Applications**
 - Process control
 - Simulation and modeling
 - Scheduling and logistics
 - Advanced process control
 - Asset management
 - Data hosting and analysis

- 24/7 security patrols
- Caging of products or site
- Final product can be secured

- Depends on client requirements
 - Secure access facility
 - Video surveillance of key areas
 - Tapes kept as required

- Data Security and Access Intellectual Property



SGS NEXT STEP: ON-SITE OPERATIONS

- Plant services
 - Commissioning
 - Management
 - **Training**
- Laboratory services
 - Design
 - Supply and outfitting
 - Operation
 - **Training**
 - Metallurgical accounting

SGS PRE-PLANNED ALLOWANCES AND FLEXIBILITY

- Changes CONTROL the success of piloting game, must preplan. Allow for:
 - sample variability
 - key parameter adjustment
 - recycle streams flowrates
- Design, sizing and construction of equipment, piping and peripherals adjusting residence times in **ALL** circuits
- Flexibility decreases with stage- from pre- to fullfeasibility.

SGS PLANNING


		N 1		4 6 11		6 11 1 4	1
1	Transfer Metsim data/ test data	No one	planned	to fail.	They	/ failed to	plan

- 2 Determine pilot plant flow rates
- 3 Verify mass balance
- 4 Define: Residence time, Tank size and numbers, Surge volume, Cycle times
- 5 Produce detailed unit operations sequence
- 6 Select "off the shelf" equipment tanks, pumps, sensors, peripherals...
- 7 Define control requirements
- 8 Selection of adequate flowrate measurement devices for gases and liquids
- 9 Design project -specific equipment tanks, thickeners/ccd, "exotics", etc.
- 10 Define reagent requirements and order, include gas reagents
- 11 Produce Floor plan request Client review if necessary
- 12 Final review before construction include Client input
- 13 Construction
- 14 Attach instrumentation and control
- 15 Define detailed operating procedures
- 16 Define operating data logging requirements
- 17 Design sampling schedule, include sampling types
- 18 Design material management sheets
- 19 Define IT requirements
- 20 Produce first draft of pilot plants operations plans and submit to client for approval
- 21 General review include Client input
- 22 Define Health and Safety requirements, including HAZOP
- 23 Engineers training session
- 24 Key personnel training session
- 25 All personnel training session and HAZOP

- Written plan
- Checklist
- Update
- Manage

- Sample
- Money, time, human resources
- Work scope vs. expectations and "moving targets"
- Severe "under-testing" at bench scale
- Key metallurgical expertise
- Technical advances

WWW.SGS.COM

